0%

谈反应式编程在服务端中的应用,数据库操作优化,从20秒到0.5秒

反应式编程在客户端编程当中的应用相当广泛,而当前在服务端中的应用相对被提及较少。本篇将介绍如何在服务端编程中应用响应时编程来改进数据库操作的性能。

Newbe.Claptrap 是一个用于轻松应对并发问题的分布式开发框架。如果您是首次阅读本系列文章。建议可以先从本文末尾的入门文章开始了解。

开篇就是结论

利用 System.Reactive 配合 TaskCompleteSource ,可以将分散的单次数据库插入请求合并会一个批量插入的请求。在确保正确性的前提下,实现数据库插入性能的优化。

如果读者已经了解了如何操作,那么剩下的内容就不需要再看了。

预设条件

现在,我们假设存在这样一个 Repository 接口来表示一次数据库的插入操作。

namespace Newbe.RxWorld.DatabaseRepository
{
public interface IDatabaseRepository
{
/// <summary>
/// Insert one item and return total count of data in database
/// </summary>
/// <param name="item"></param>
/// <returns></returns>
Task<int> InsertData(int item);
}
}

接下来,我们在不改变该接口签名的前提下,体验一下不同的实现带来的性能区别。

基础版本

首先是基础版本,采用的是最为常规的单次数据库INSERT操作来完成数据的插入。本示例采用的是SQLite作为演示数据库,方便读者自行实验。

namespace Newbe.RxWorld.DatabaseRepository.Impl
{
public class NormalDatabaseRepository : IDatabaseRepository
{
private readonly IDatabase _database;

public NormalDatabaseRepository(
IDatabase database)
{
_database = database;
}

public Task<int> InsertData(int item)
{
return _database.InsertOne(item);
}
}
}

常规操作。其中_database.InsertOne(item)的具体实现就是调用了一次INSERT

基础版本在同时插入小于 20 次时基本上可以较快的完成。但是如果数量级增加,例如需要同时插入一万条数据库,将会花费约 20 秒钟,存在很大的优化空间。

TaskCompleteSource

TaskCompleteSource 是 TPL 库中一个可以生成一个可操作 Task 的类型。对于 TaskCompleteSource 不太熟悉的读者可以通过该实例代码了解

此处也简单解释一下该对象的作用,以便读者可以继续阅读。

对于熟悉 javascript 的朋友,可以认为 TaskCompleteSource 相当于 Promise 对象。也可以相当于 jQuery 当中的 $.Deferred 。

如果都不了解的朋友,可以听一下笔者吃麻辣烫时想到的生活化例子。

吃麻辣烫技术解释
吃麻辣烫之前,需要先用盘子夹菜。构造参数
夹好菜之后,拿到结账处去结账调用方法
收银员结账完毕之后,会得到一个叫餐牌,会响铃的那种得到一个 Task 返回值
拿着菜牌找了一个位子坐下,玩手机等餐正在 await 这个 Task ,CPU 转而处理其他事情
餐牌响了,去取餐,吃起来Task 完成,await 节数,继续执行下一行代码

那么 TaskCompleteSource 在哪儿呢?

首先,根据上面的例子,在餐牌响的时候,我们才会去取餐。那么餐牌什么时候才会响呢?当然是服务员手动按了一个在柜台的手动开关才触发了这个响铃。

那么,柜台的这个开关,可以被技术解释为 TaskCompleteSource 。

餐台开关可以控制餐牌的响铃。同样, TaskCompleteSource 就是一种可以控制 Task 的状态的对象。

解决思路

有了前面对 TaskCompleteSource 的了解,那么接下来就可以解决文章开头的问题了。思路如下:

当调用 InsertData 时,可以创建一个 TaskCompleteSource 以及 item 的元组。为了方便说明,我们将这个元组命名为BatchItem

将 BatchItem 的 TaskCompleteSource 对应的 Task 返回出去。

调用 InsertData 的代码会 await 返回的 Task,因此只要不操作 TaskCompleteSource ,调用者就一会一直等待。

然后,另外启动一个线程,定时将 BatchItem 队列消费掉。

这样就完成了单次插入变为批量插入的操作。

笔者可能解释的不太清楚,不过以下所有版本的代码均基于以上思路。读者可以结合文字和代码进行理解。

ConcurrentQueue 版本

基于以上的思路,我们采用 ConcurrentQueue 作为 BatchItem 队列进行实现,代码如下(代码很多,不必纠结,因为下面还有更简单的):

namespace Newbe.RxWorld.DatabaseRepository.Impl
{
public class ConcurrentQueueDatabaseRepository : IDatabaseRepository
{
private readonly ITestOutputHelper _testOutputHelper;
private readonly IDatabase _database;
private readonly ConcurrentQueue<BatchItem> _queue;

// ReSharper disable once PrivateFieldCanBeConvertedToLocalVariable
private readonly Task _batchInsertDataTask;

public ConcurrentQueueDatabaseRepository(
ITestOutputHelper testOutputHelper,
IDatabase database)
{
_testOutputHelper = testOutputHelper;
_database = database;
_queue = new ConcurrentQueue<BatchItem>();
// 启动一个 Task 消费队列中的 BatchItem
_batchInsertDataTask = Task.Factory.StartNew(RunBatchInsert, TaskCreationOptions.LongRunning);
_batchInsertDataTask.ConfigureAwait(false);
}

public Task<int> InsertData(int item)
{
// 生成 BatchItem ,将对象放入队列。返回 Task 出去
var taskCompletionSource = new TaskCompletionSource<int>();
_queue.Enqueue(new BatchItem
{
Item = item,
TaskCompletionSource = taskCompletionSource
});
return taskCompletionSource.Task;
}

// 从队列中不断获取 BatchItem ,并且一批一批插入数据库,更新 TaskCompletionSource 的状态
private void RunBatchInsert()
{
foreach (var batchItems in GetBatches())
{
try
{
BatchInsertData(batchItems).Wait();
}
catch (Exception e)
{
_testOutputHelper.WriteLine($"there is an error : {e}");
}
}

IEnumerable<IList<BatchItem>> GetBatches()
{
var sleepTime = TimeSpan.FromMilliseconds(50);
while (true)
{
const int maxCount = 100;
var oneBatchItems = GetWaitingItems()
.Take(maxCount)
.ToList();
if (oneBatchItems.Any())
{
yield return oneBatchItems;
}
else
{
Thread.Sleep(sleepTime);
}
}

IEnumerable<BatchItem> GetWaitingItems()
{
while (_queue.TryDequeue(out var item))
{
yield return item;
}
}
}
}

private async Task BatchInsertData(IEnumerable<BatchItem> items)
{
var batchItems = items as BatchItem[] ?? items.ToArray();
try
{
// 调用数据库的批量插入操作
var totalCount = await _database.InsertMany(batchItems.Select(x => x.Item));
foreach (var batchItem in batchItems)
{
batchItem.TaskCompletionSource.SetResult(totalCount);
}
}
catch (Exception e)
{
foreach (var batchItem in batchItems)
{
batchItem.TaskCompletionSource.SetException(e);
}

throw;
}
}

private struct BatchItem
{
public TaskCompletionSource<int> TaskCompletionSource { get; set; }
public int Item { get; set; }
}
}
}

以上代码中使用了较多的 Local Function 和 IEnumerable 的特性,不了解的读者可以点击此处进行了解

正片开始!

接下来我们使用 System.Reactive 来改造上面较为复杂的 ConcurrentQueue 版本。如下:

namespace Newbe.RxWorld.DatabaseRepository.Impl
{
public class AutoBatchDatabaseRepository : IDatabaseRepository
{
private readonly ITestOutputHelper _testOutputHelper;
private readonly IDatabase _database;
private readonly Subject<BatchItem> _subject;

public AutoBatchDatabaseRepository(
ITestOutputHelper testOutputHelper,
IDatabase database)
{
_testOutputHelper = testOutputHelper;
_database = database;
_subject = new Subject<BatchItem>();
// 将请求进行分组,每50毫秒一组或者每100个一组
_subject.Buffer(TimeSpan.FromMilliseconds(50), 100)
.Where(x => x.Count > 0)
// 将每组数据调用批量插入,写入数据库
.Select(list => Observable.FromAsync(() => BatchInsertData(list)))
.Concat()
.Subscribe();
}

// 这里和前面对比没有变化
public Task<int> InsertData(int item)
{
var taskCompletionSource = new TaskCompletionSource<int>();
_subject.OnNext(new BatchItem
{
Item = item,
TaskCompletionSource = taskCompletionSource
});
return taskCompletionSource.Task;
}

// 这段和前面也完全一样,没有变化
private async Task BatchInsertData(IEnumerable<BatchItem> items)
{
var batchItems = items as BatchItem[] ?? items.ToArray();
try
{
var totalCount = await _database.InsertMany(batchItems.Select(x => x.Item));
foreach (var batchItem in batchItems)
{
batchItem.TaskCompletionSource.SetResult(totalCount);
}
}
catch (Exception e)
{
foreach (var batchItem in batchItems)
{
batchItem.TaskCompletionSource.SetException(e);
}

throw;
}
}

private struct BatchItem
{
public TaskCompletionSource<int> TaskCompletionSource { get; set; }
public int Item { get; set; }
}
}
}

代码减少了 50 行,主要原因就是使用 System.Reactive 中提供的很强力的 Buffer 方法实现了 ConcurrentQueue 版本中的复杂的逻辑实现。

老师,可以更给力一点吗?

我们,可以“稍微”优化一下代码,将 Buffer 以及相关的逻辑独立于“数据库插入”这个业务逻辑。那么我们就会得到一个更加简单的版本:

namespace Newbe.RxWorld.DatabaseRepository.Impl
{
public class FinalDatabaseRepository : IDatabaseRepository
{
private readonly IBatchOperator<int, int> _batchOperator;

public FinalDatabaseRepository(
IDatabase database)
{
var options = new BatchOperatorOptions<int, int>
{
BufferTime = TimeSpan.FromMilliseconds(50),
BufferCount = 100,
DoManyFunc = database.InsertMany,
};
_batchOperator = new BatchOperator<int, int>(options);
}

public Task<int> InsertData(int item)
{
return _batchOperator.CreateTask(item);
}
}
}

其中 IBatchOperator 等代码,读者可以到代码库中进行查看,此处就不在陈列了。

性能测试

基本可以测定如下:

在 10 条数据并发操作时,原始版本和批量版本没有多大区别。甚至批量版本在数量少时会更慢,毕竟其中存在一个最大 50 毫秒的等待时间。

但是,如果需要批量操作并发操作一万条数据,那么原始版本可能需要消耗 20 秒,而批量版本仅仅只需要 0.5 秒。

所有的示例代码均可以在代码库中找到。如果 Github Clone 存在困难,也可以点击此处从 Gitee 进行 Clone

最后但是最重要!

如果读者对该内容感兴趣,欢迎转发、评论、收藏文章以及项目。

最近作者正在构建以反应式Actor模式事件溯源为理论基础的一套服务端开发框架。希望为开发者提供能够便于开发出“分布式”、“可水平扩展”、“可测试性高”的应用系统——Newbe.Claptrap

本篇文章是该框架的一篇技术选文,属于技术构成的一部分。

联系方式:

您还可以查阅本系列的其他选文:

理论入门篇

  1. Newbe.Claptrap-一套以“事件溯源”和“Actor模式”作为基本理论的服务端开发框架

术语介绍篇

  1. Actor 模式
  2. 事件溯源(Event Sourcing)
  3. Claptrap
  4. Minion
  5. 事件 (Event)
  6. 状态 (State)
  7. 状态快照 (State Snapshot)
  8. Claptrap 设计图 (Claptrap Design)
  9. Claptrap 工厂 (Claptrap Factory)
  10. Claptrap Identity
  11. Claptrap Box
  12. Claptrap 生命周期(Claptrap Lifetime Scope)
  13. 序列化(Serialization)

实现入门篇

  1. Newbe.Claptrap 框架入门,第一步——创建项目,实现简易购物车
  2. Newbe.Claptrap 框架入门,第二步——简单业务,清空购物车
  3. Newbe.Claptrap框架入门,第三步——定义Claptrap,管理商品库存
  4. Newbe.Claptrap框架入门,第四步——利用Minion,商品下单

样例实践篇

  1. 构建一个简易的火车票售票系统,Newbe.Claptrap框架用例,第一步——业务分析
  2. 在线体验火车票售票系统

其他番外篇

  1. 谈反应式编程在服务端中的应用,数据库操作优化,从20秒到0.5秒
  2. 谈反应式编程在服务端中的应用,数据库操作优化,提速 Upsert
  3. 十万同时在线用户,需要多少内存?——Newbe.Claptrap框架水平扩展实验
  4. docker-mcr 助您全速下载 dotnet 镜像
  5. 十多位全球技术专家,为你献上近十个小时的.Net微服务介绍
  6. 年轻的樵夫哟,你掉的是这个免费8核4G公网服务器,还是这个随时可用的Docker实验平台?
  7. 如何使用dotTrace来诊断netcore应用的性能问题
  8. 只要十步,你就可以应用表达式树来优化动态调用

GitHub 项目地址:https://github.com/newbe36524/Newbe.Claptrap

Gitee 项目地址:https://gitee.com/yks/Newbe.Claptrap

您当前查看的是先行发布于 www.newbe.pro 上的博客文章,实际开发文档随版本而迭代。若要查看最新的开发文档,需要移步 claptrap.newbe.pro

Newbe.Claptrap

------ 本文结束------